The rodent olfactory bulb (OB) is continuously supplied with adult-born cells maturing into GABAergic neurons. Using in vivo ratiometric Ca2+ imaging to readout ongoing and sensory-driven activity, we asked whether mature adult-born cells (mABCs) in the glomerular layer of the bulb become functionally identical to resident GABAergic (ResGABA) neurons. In awake head-restrained mice the two cell populations differed significantly in terms of ongoing spontaneous activity, with 24% of mABCs contributing to a strongly active cell cluster, absent among ResGABA cells. Odor-evoked responses of mABCs were sparse, less reliable, and had smaller amplitudes compared with ResGABA cells. The opposite was seen under anesthesia, with response reliability increasing and response size of mABCs becoming larger than that of ResGABA cells. Furthermore, ongoing activity of mABCs showed increased sensitivity to ketamine/xylazine and was selectively blocked by the antagonist of serotonin receptors methysergide. These functional features of mABCs clearly distinguish them from other OB interneurons.

see more: https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(20)30420-3#

Background

Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells.

Methods

We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed.

Findings

Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice.

Interpretation

Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy.

read more: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30365-0/fulltext

commentary: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30398-4/fulltext

Throughout the lifespan, microglia, the primary innate immune cells of the brain, fulfill a plethora of homeostatic as well as active immune defense functions, and their aging-induced dysfunctionality is now considered as a key trigger of aging-related brain disorders. Recent evidence suggests that both organism’s sex and age critically impact the functional state of microglia but in vivo determinants of such state(s) remain unclear. Therefore, we analyzed in vivo the sex-specific functional states of microglia in young adult, middle aged and old wild type mice by means of multicolor two-photon imaging, using the microglial Ca2 + signaling and directed process motility as main readouts. 

see more

Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5’-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotidecontrolled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds.

see more

Peripheral inflammation is known to trigger a mirror inflammatory response in the brain, involving brain's innate immune cells - microglia. However, the functional phenotypes, which these cells adopt in the course of peripheral inflammation, remain obscure. In vivo two-photon imaging of microglial Ca2+ signaling as well as process motility reveals two distinct functional states of cortical microglia during a lipopolysaccharide-induced peripheral inflammation: an early "sensor state" characterized by dramatically increased intracellular Ca signaling but ramified morphology and a later "effector state" characterized by slow normalization of intracellular Ca2+ signaling but hypertrophic morphology, substantial IL-1β production in a subset of cells as well as increased velocity of directed process extension and loss of coordination between individual processes. Thus, lipopolysaccharide-induced microglial Ca2+ signaling might represent the central element connecting receptive and executive functions of microglia.

see more

Involvement of the central nervous system (CNS) is the most severe consequence of some parasitic infections. Protozoal infections comprise a group of diseases that together affect billions of people worldwide and, according to the World Health Organization, are responsible for more than 500000 deaths annually. They include African and American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, and amoebiasis. Mechanisms underlying invasion of the brain parenchyma by protozoa are not well understood and may depend on parasite nature: a vascular invasion route is most common. Immunosuppression favors parasite invasion into the CNS and therefore the host immune response plays a pivotal role in the development of a neuropathology in these infectious diseases. In the brain, microglia are the resident immune cells active in defense against pathogens that target the CNS. Beside their direct role in innate immunity, they also play a principal role in coordinating the trafficking and recruitment of other immune cells from the periphery to the CNS. Despite their evident involvement in the neuropathology of protozoan infections, little attention has given to microglia–parasite interactions. This review describes the most prominent features of microglial cells and protozoan parasites and summarizes the most recent information regarding the reaction of microglial cells to parasitic infections. We highlight the involvement of the periphery–brain axis and emphasize possible scenarios for microglia–parasite interactions.

see more

Brain aging is characterized by a chronic, low-grade inflammatory state, promoting deficits in cognition and the development of age-related neurodegenerative diseases. Malfunction of microglia, the brain-resident immune cells, was suggested to play a critical role in neuroinflammation, but the mechanisms underlying this malfunctional phenotype remain unclear.

see more

Neuronal hyperactivity is the emerging functional hallmark of Alzheimer’s disease (AD) in both humans and different mouse models, mediating an impairment of memory and cognition. The mechanisms underlying neuronal hyperactivity remain, however, elusive. In vivo Ca2+ imaging of somatic, dendritic, and axonal activity patterns of cortical neurons revealed that both healthy aging and AD-related mutations augment neuronal hyperactivity. The AD-related enhancement occurred even without amyloid deposition and neuroinflammation, mainly due to presenilin-mediated dysfunction of intracellular Ca2+ stores in presynaptic boutons, likely causing more frequent activation of synaptic NMDA receptors. In mutant but not wild-type mice, store emptying reduced both the frequency and amplitude of presynaptic Ca2+ transients and, most importantly, normalized neuronal network activity. Postsynaptically, the store dysfunction was minor and largely restricted to hyperactive cells. These findings identify presynaptic Ca2+ stores as a key element controlling AD-related neuronal hyperactivity and as a target for disease-modifying treatments.

see more

 

Brains’ high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains’ redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals’ life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains’ adaptivity.

see more

Functioning at the interface between the nervous and immune systems, in the amyloid-depositing brain, astrocytes become hypertrophic and accumulate around senile plaques. Moreover, hippocampal astrocytes upregulate their γ-aminobutyric acid (GABA) content and enhance tonic inhibition, likely causing local circuit imbalance. It remains, however, unclear whether this effect is hippocampus specific and how it is regulated during disease progression. Here, we studied changes in astrocytic morphology and GABA content in the frontal cortex and dentate gyrus of control and amyloid-depositing mice. Healthy aging was accompanied by a transient increase in astrocytic GABA content at middle age and region-specific alterations of soma size. In contrast, amyloid deposition caused a gradual cortex-accentuated increase in soma size. Importantly, our data uncovered a bell-shaped relationship between the mouse age and astrocytic GABA content in both brain regions. Moreover, in mice carrying an Alzheimer's disease-related mutation in presenilin 1, astrocytes accumulated GABA even in the absence of amyloidosis. These data question the proposed inhibition of astrocytic GABA synthesis as a universal strategy for treating network dysfunction in Alzheimer's disease.

see more

 

Microglia, resident immune cells of the brain, react to the presence of pathogens/danger signals with a large repertoire of functional responses including morphological changes, proliferation, chemotaxis, production/release of cytokines, and phagocytosis. In vitro studies suggest that many of these effector functions are Ca2+-dependent, but our knowledge about in vivo Ca2+ signalling in microglia is rudimentary. This is mostly due to technical reasons, as microglia largely resisted all attempts of in vivo labelling with Ca2+ indicators. Here, we introduce a novel approach, utilizing a microglia-specific microRNA-9-regulated viral vector, enabling the expression of a genetically-encoded ratiometric Ca2+ sensor Twitch-2B in microglia. The Twitch-2B-assisted in vivo imaging enables recording of spontaneous and evoked microglial Ca2+ signals and allows for the first time to monitor the steady state intracellular Ca2+ levels in microglia. Intact in vivo microglia show very homogenous and low steady state intracellular Ca2+ levels. However, the levels increase significantly after acute slice preparation and cell culturing along with an increase in the expression of activation markers CD68 and IL-1β. These data identify the steady state intracellular Ca2+ level as a versatile microglial activation marker, which is highly sensitive to the cell’s environment.

see more: 

Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis.

see more 

The behavior of adult-born cells can be easily monitored in cell culture or in lower model organisms, but longitudinal observation of individual mammalian adult-born cells in their native microenvironment still proves to be a challenge. Here we have established an approach named optical cell positioning system for long-term in vivo single-cell tracking, which integrates red-green-blue cell labeling with repeated angiography. By combining this approach with in vivo two-photon imaging technique, we characterized the in vivo migration patterns of adult-born neurons in the olfactory bulb. In contrast to the traditional view of mere radial migration of adult-born cells within the bulb, we found that juxtaglomerular cells switch from radial migration to long distance lateral migration upon arrival in their destination layer. This unique long-distance lateral migration has characteristic temporal (stop-and-go) and spatial (migratory, unidirectional or multidirectional) patterns, with a clear cell age-dependent decrease in the migration speed. The active migration of adult-born cells coincides with the time period of initial fate determination and is likely to impact on the integration sites of adult-born cells, their odor responsiveness, as well as their survival rate.

See more

Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease. 

see more

A large body of evidence from in vitro studies suggests that GABA is depolarizing during early postnatal development. However, the mode of GABA action in the intact developing brain is unknown. Here we examine the in vivo effects of GABA in cells of the upper cortical plate using a combination of electrophysiological and Ca2+-imaging techniques. We report that at postnatal days (P) 3-4, GABA depolarizes the majority of immature neurons in the occipital cortex of anaesthetized mice. At the same time, GABA does not efficiently activate voltage-gated Ca2+ channels and fails to induce action potential firing. Blocking GABAA receptors disinhibits spontaneous network activity, whereas allosteric activation of GABAA receptors has the opposite effect. In summary, our data provide evidence that in vivo GABA acts as a depolarizing neurotransmitter imposing an inhibitory control on network activity in the neonatal (P3-4) neocortex.

see more

Juxtaglomerular neurons (JGNs) of the mammalian olfactory bulb are generated throughout life. Their integration into the preexisting neural network, their differentiation and survival therein depend on sensory activity, but when and how these adult-born cells acquire responsiveness to sensory stimuli remains unknown. In vivo two-photon imaging of retrovirally labelled adult-born JGNs reveals that ~90% of the cells arrive at the glomerular layer after day post injection (DPI) 7. After arrival, adult-born JGNs are still migrating, but at DPI 9, 52% of them have odour-evoked Ca(2+) signals. Their odourant sensitivity closely resembles that of the parent glomerulus and surrounding JGNs, and their spontaneous and odour-evoked spiking is similar to that of their resident neighbours. Our data reveal a remarkably rapid functional integration of adult-born cells into the preexisting neural network. The mature pattern of odour-evoked responses of these cells strongly contrasts with their molecular phenotype, which is typical of immature, migrating neuroblasts.

see more

The dynamics of β-amyloid deposition and related second-order physiological effects, such as regional cerebral blood flow (rCBF), are key factors for a deeper understanding of Alzheimer's disease (AD). We present longitudinal in vivo data on the dynamics of β-amyloid deposition and the decline of rCBF in two different amyloid precursor protein (APP) transgenic mouse models of AD. Using a multiparametric positron emission tomography and magnetic resonance imaging approach, we demonstrate that in the presence of cerebral β-amyloid angiopathy (CAA), β-amyloid deposition is accompanied by a decline of rCBF. Loss of perfusion correlates with the growth of β-amyloid plaque burden but is not related to the number of CAA-induced microhemorrhages. However, in a mouse model of parenchymal β-amyloidosis and negligible CAA, rCBF is unchanged. Because synaptically driven spontaneous network activity is similar in both transgenic mouse strains, we conclude that the disease-related decline of rCBF is caused by CAA.

see more

Neuroinflammation is a hallmark of Alzheimer’s disease (AD) both in man and in multiple mouse models, and epidemiological studies link the use of anti-inflammatory drugs with a reduced risk of developing the disease. AD-related neuroinflammation is largely mediated by microglia, the main immune cells of the central nervous system. In vitro, executive functions of microglia are regulated by intracellular Ca2+ signals, but little is known about microglial Ca2+ signaling in vivo. Here we analyze in vivo properties of these cells in two mouse models of AD. In both strains plaque-associated microglia had hypertrophic/amoeboid morphology and were strongly positive for markers of activation such as CD11b and CD68. Activated microglia failed to respond reliably to extracellular release of adenosine triphosphate (ATP, mimicking tissue damage) and showed an increased incidence of spontaneous intracellular Ca2+ transients. These Ca2+ transients required activation of ATP receptors and Ca2+ release from the intracellular Ca2+ stores, and were not induced by neuronal or astrocytic hyperactivity. Neuronal silencing, however, selectively increased the frequency of Ca2+ transients in plaque-associated microglia. Thus, our in vivo data reveal substantial dysfunction of plaque-associated microglia and identify a novel Ca2+ signal possibly triggering a Ca2+-dependent release of toxic species in the plaque vicinity.

see more

The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.

see more

see also: accompanied News and Views

 

Dysregulation of intracellular Ca2+ homeostasis has been proposed as a common proximal cause of neural dysfunction during aging and Alzheimer's disease (AD). In this context, aberrant Ca2+ signaling has been viewed as a neuronal phenomenon mostly related to the dysfunction of intracellular Ca2+ stores. However, recent data suggest that, in AD, Ca2+ dyshomeostasis is not restricted to neurons but represents a global phenomenon affecting virtually all cells in the brain. AD-related aberrant Ca2+ signaling in astrocytes and microglia, which is activated during the disease, probably contributes profoundly to an inflammatory response that, in turn, impacts neuronal Ca2+ homeostasis and brain function. Based on recent data obtained in vivo and in vitro, we propose that bidirectional interactions between the inflammatory responses of glial cells and aberrant Ca2+signaling represent a vicious cycle accelerating disease progression.

see more