The focus of this research group is to identify the primary brain nuclei potentially contributing to the switch of coma to awake states in the rat brain. Genetic tools and electrochemical recordings will be combined with fiber optic imaging and high field fMRI to study the altered brain function from the levels of molecules, to cells, and eventually to neurovascular circuits. We are expecting to translate the knowledge acquired from the rodent brain to lead specific neural control for therapies of coma patients.We will test a central hypothesis that there is a “core switch”, which can be modulated to ameliorate the coma state of the brain. The focus of the research group is to decipher the biological feature of the “core switch”. Small animal fMRI allows us to map the global functional changes from multiple brain nuclei at different states. This provides us critical guide to target the potential candidate brain regions, of which the strategy has been successfully implemented in our previous work. The specific cellular and molecular features of the functional changes detected by fMRI can be further studied by fiber optic/electrochemical recordings with optogenetic tools.

 

More information's on Translational Neuroimaging and Neural Control